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FORMULATION O F  THE INFORMATION CAPACITY OF THE 

OPTICAL-MECHANICAL LINE-SCAN IMAGING PROCESS 

Friedrich 0. Huck and Stephen K. P a r k  
Langley Research Center 

SUMMARY 

The information capacity of the optical-mechanical line-scan imaging process is 
formulated by generally following the classical work of Fellgett and Linfoot who applied 
Shannon's theory of information to  the assessment of film-camera images. 
images obtained with film cameras and optical-mechanical line-scan devices are both 
degraded by blurring of spatial detail and by noise, the latter images a r e  also degraded by 
aliasing that results when spatial scene radiance variations are undersampled, and by 
quantization that results when the photosensor analog signal is converted to a digital sig- 
nal for transmission. 

Although 

Numerical evaluations of the derived expression reveal that both the information 
capacity for a fixed data density and the information efficiency (Le., the ratio of informa- 
tion capacity to data density) exhibit a distinct single maximum when displayed as a func- 
tion of sampling rate,  and that the location of this maximum is determined by the system 
frequency -response shape, signal-to-noise ratio, and quantization interval. These results 
suggest a general design criteria for optical-mechanical line-scan devices: namely, the 
optimization of either their information capacity for a fixed data density o r  their informa- 
tion efficiency, especially if  large quantities of data a r e  involved o r  the data must be trans- 
mitted over long distances. 

INTRODUCTION 

Film and television cameras have generally been employed in the past to characterize 
spatial variations of scene brightness, whereas optical-mechanical line-scan devices have 
been employed to characterize spectral  and radiometric variations. Little attention has, 
therefore, been paid to the image quality of spatial detail obtained with the latter devices. 
However, the spatial characterization of scenes has become in recent years  an important 
objective in several  applications of the optical-mechanical line-scan technique to multi- 
spectral  imaging systems for Earth-orbiting spacecraft; and it is the most important 
objective in applications to the so-called facsimile cameras of the U.S.S.R. spacecraft Luna 
(ref. 1) and Lunakhod (ref. 2) and the U.S. spacecraft Viking Lander (ref. 3). 



Data returned from Earth-orbiting spacecraft are constantly increasing, and data 
returned from planetary spacecraft will remain very expensive. In both cases, the quality 
of the data is most generally assessed by i t s  information content, and the capability of the 
imaging system by i ts  information capacity. The application of information theory to  the 
assessment of optical-mechanical line-scan devices is particularly interesting because 
the quantity of data that is transmitted and the quantity of information that these data can 
contain are interrelated by two factors: the inevitable line-scan sampling process asso-  
ciated with this device, and the electronic sampling and quantization process required fo r  
digital data transmission. 

The approach that is pursued here  to formulate the information capacity of the 
optical-mechanical line-scan imaging process generally follows the classical work of 
Fellgett and Linfoot (ref. 4) who applied Shannon's theory of information (ref. 5) to  the 
assessment of the image quality obtained with film cameras.  Images obtained with film 
cameras and optical-mechanical line-scan devices are both degraded by blurring of small  
detail and by random noise. However, the latter images are also degraded by the aliasing 
that results when spatial scene radiance variations are undersampled and by the quantiza- 
tion that results when the photosensor analog signal is converted to a digital signal for  
trans mission. 

SYMBOLS 

isoplanatism patch of camera field of view 

solid angle of isoplanatism patch, sr 

sampling frequency passband 

camera frequency passband 

spatial function confined to A 

frequency spectrum of g(x,1c/) confined to  F 

data density, bits/sr  

information density or capacity, binits/sr 

quantity of data in A, bits 

n 



k 

K 

m7n 

M7N 

r7 

K 

entropy of g(x,+b), binits 

quantity of information in A, binits 

random variable, minus its average value, of all signal and noise components 
i n A  

filter-shape parameter (see fig. 3) 

average signal, A 

elevation and azimuth sampling counts, respectively 

number of elevation and azimuth samples, respectively 

magnitude of white Gaussian noise spectrum, A 

random variable, minus i ts  average value, of all noise components in A 

average spectral radiance of object, W/m2-sr -pm 

normalized spatial distribution of object radiance 

elevation and azimuth integers of mathematical sampling points in F, 
respectively 

random variable, minus i ts  average value, of all signal components in A 

spatial distribution of camera signal, A 

frequency spectrum of camera signal, A 

elevation and azimuth sampling intervals, respectively, rad 

delta or unit impulse function 

number of binary encoding levels, bits 

number of quantization levels 
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wavelength, pm 

standard deviation 

point -spread function 

spatial frequency response 

elevation and azimuth spatial frequencies, respectively, rad-l 

cutoff frequency of electronic filter, r a d - l  

square root of ?(u,w) 

Wiener spectrum, or power spectral density 

elevation and azimuth angles of camera scanning coordinates, respectively, 
rad 

sampling or  comb function 

average value or ensemble average 

spatial frequency domain 

convolution 

Subscripts : 

an aliasing noise 

C camera 

e electronics 

en electronic noise 

g spatial function g(x,*) 

1 lens 
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0 optics 

PS proper signal 

FORMULATION 

The Optical-Mechanical Line-Scan Imaging P rocess  

Consider an optical-mechanical line-scan imaging device such as the facsimile cam- 
era shown in figure 1. Radiation from the object field is reflected by the scanning mi r ro r ,  
captured by the objective lens, and projected onto a plane which contains a photosensor 
covered by a small  aperture. The photosensor converts the radiation falling on the aper- 
ture  into an electrical signal which is then amplified, sampled, and quantized for digital 
transmission. As the mi r ro r  rotates, the imaged object field moves past the aperture and 
thus permits the aperture to  scan vertical strips. The camera rotates in small  steps 
between each vertical line scan until the entire object field of interest is scanned. The 
distance between object and camera is assumed to be large compared with the distance 
between camera mi r ro r  and lens; thus, spherical coordinates with an origin at the center 
of the objective lens can be used as reference for the elevation and azimuth imaging coor- 
dinates, labeled "x" and "+," respectively. 

The process by which this device transfers the (continuous) object radiance distri-  
bution o( x,+) into a (discrete) electrical signal S(x,+) can be approximately formulated 
by the equation (ref. 6) 

The symbol * denotes convolution, K is the camera response to uniform radiance, and 
T ~ ( X , + )  is the camera point-spread function which, in turn, is given by 

~ C ( X , + )  = T ~ ( x , + )  * ~p(x,IcI) * 

where T ~ ( x , + ) ,  

photosensor aperture, and signal electronics, respectively. The symbol m(" k )  is the 

sampling (ref. 7) or  comb (ref. 8) function. This function is an infinite sum of delta func- 
tions with spacings X and Y radians, which in this case correspond to the effective 
camera elevation and azimuth sampling intervals, respectively : 

T ~ ( x , + ) ,  and -re(x) 6(+) are the point-spread functions of the lens, 

x 'Y 

co co 

) = XY 2 2 s(x-xm,+-Yn) 
m= -co n= -co m=-m n=-co 
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For facsimile cameras  used on planetary landers, the spacing Y is equal to the azimuth 
stepping interval t imes the cosine of x where x is measured from a plane normal to 
the optical axis of the objective lens. 

An approximation is introduced into the formulation of equation (1) by the separation 
of spectral  and spatial object and camera characteristics, with the average signal K 
accounting for the spectral  characteristics. Actually, o(x,+) and T ~ ( X , @ )  a r e  functions 
of wavelength, and the spatial convolution should, therefore, be integrated over wavelength. 
However, it is convenient here  to let (ref. 9) 

where A, is the a r e a  of the lens aperture, Bc is the solid angle of the field of view 
formed by the photosensor aperture (Le., the solid angle that defines a picture element), 
F ( A )  is the average spectral  radiance of the object, T ~ ( A )  is the transmittance of the 
camera optics, and R(A) is the responsivity of the photosensor. The use of K in equa- 
tion (1) permits o(x,@) and ~ ~ ( x , I + b )  to be expressed as normalized functions while 
S(x,+) takes on the unit of K, which is amperes. 

The optical-mechanical line-scan imaging process is implicitly a function of time. 
The formulation of equation (1) implies, therefore, that the convolution of the object radi- 
ance distribution with the camera point-spread function be performed for each picture 
element (pixel) in a picture to allow for  changes of o(x,@) or  ~ ~ ( x , I + b )  with time. If 
neither object radiance distribution nor camera response var ies  with time (as is assumed 
here), then it is immaterial  whether the pixels in a picture a r e  formed simultaneously or  
in sequence, and the convolution needs to be performed only once for each picture. 

Significant variations in defocus blur and in azimuth sampling intervals, however, 
may occur as a function of the elevation scanning angle. If such variations occur, it is 
necessary for the purpose of analysis to divide the camera field of view into isoplanatism 
patches (i.e., areas within which these variations become negligibly small) and res t r ic t  all 
formulations to such a patch. The total information contained in an image is the sum of the 
information contained in all the patches that make up the image. 

An isoplanatism patch is denoted here by A and assumed to be rectangular and cen- 
tered at x = I+b = 0. For M samples per line scan and N line scans in A ,  x, and + 
a r e  limited to 

-XM/2 Z x  5 XM/2 

-YN/2 5 I+b Z YN/2 
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and the solid angle subtended by A is /AI = XYMN steradians. Any spatial function 
g(x,@) is then said to be confined to A if g(x,@) = 0 for  all points outside A. The 
e r r o r  that is introduced by confining the radiance distribution o(x,*) to A is negligibly 
small  everywhere in A except at a very narrow str.ip along the boundary of A. (See, for 
example, refs. 10 and 11.) 

The imaging process formulated by equation (1) is generally more convenient to eval- 
uate for the isoplanatism patch A in the frequency rather  than spatial domain. Any spa- 
tial function g(x,@) which is confined to A and its corresponding frequency function 
i(u,w) are related by the Fourier transform pair 

m 

By using this transformation, equation (1) becomes 

* XY lIT(Xu,Yw) 

/ 
where 

and 

Equation (3a) can be written more conveniently as 

m W 

. 

or 
00 00 

A 

S(u,w) = K 6(u,w) ;,(u,w) + K 
m=-m n=-m 
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The first t e r m  of the equation for S(u,w) given by equation (3c), K 6(u,w) FC(u,w), is 
equal to the image frequency spectrum obtained with film cameras if FC(u,o) is inter- 
preted as the combined camera lens and fi lm spatial frequency response and K as a 
(linear) film exposure-to-density transfer function. It is the existence of the sidebands 
given by the second te rm in equation (3c) that distinguishes the signal frequency spectrum 
generated by the optical-mechanical line-scan imaging process from the image frequency 
spectrum of the film camera. 

A 

In order to characterize the signal frequency spectrum S(u,w), it is convenient to 
make the following two definitions: First, let I? be the camera passband; ultimately, 

this passband is limited by the diffraction limit of the camera objective lens (Le., 

u2 -t w2 < (2 SF Qr, where sin Q is the lens numerical aperture . Second,'let 6 be 1 
1 1 

2x 2Y 
the sampling passband with corner points u = f- and w = f- and sides parallel to 

the frequency coordinates (u,w). Two cases must be recognized as illustrated in figure 2: 
(a) sufficient sampling when $ C B; and (b) insufficient sampling, o r  undersampling, 
when F Q B. 

If sufficient sampling occurs (fig. 2(a)), then the "proper signal" te rm 
K ;(u,w) ?,(u,w) can, in the absence of noise, be completely recovered by passing the 
signal frequency spectrum through an ideal low-pass filter whose passband agrees with 
the camera passband I? or  sampling passband B. However, i f  insufficient sampling 
occurs (fig. 2(b)), then the "proper signal" components cannot be completely recovered, 
because displaced, false-frequency components, called aliased signals, fall into the pass- 
band $. These aliased signal components cannot be distinguished in practice from the 
proper-signal components but tend to mask spatial detail in the image just like noise. 
aliased signal is consequently treated as noise whose power is additive. 

The 

Data Density 

Recall that M is the number of samples per line scan and N is the number of 
line scans in the isoplanatism patch A, and let K be the number of quantization levels 
of each sample. Then, the number of distinguishable states in A is K ~ ~ ,  and the 
amount of data in A is given by 

Hd = MN log2 K = - IAl log2 K 
XY 

The units of Hd are binary digits. It follows that the data density in A (i.e., the chan- 
nel capacity of the optical-mechanical line-scan device for the field of view I A I) is given 

by 
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Hd 1 
- [AI - X Y  

h - - -  -log2 K 

The units of hd are binary digits per  steradian. For q-bit encoding, K = 2rl and 

If all the image states K~~ are independent and equally probable, then Hd is the 
amount of information contained in A and hd is the information density. However, all 
image states are generally neither independent nor equally probable in practice. To dis- 
tinguish between units of data and information, the unit "binary digits" will be abbreviated 
to "bits" for data and to 'binits" for information. 

Information Density 

The spatial radiance distribution of natural scenes is generally not completely pre- 
dictable and must be treated as a random phenomenon. Otherwise, of course, the image 
data of such a scene could not be considered to ca r ry  any information. Image data of a 
reference test chart, for example, are not intended to provide information about the chart  
but about the camera performance. Consequently, an imaging system (just like a com- 
munication o r  control system) must be designed for an ensemble of scene radiances (or 
messages) and an ensemble of noise, not a particular scene radiance (or message) and a 
particular realization of noise. Wiener has shown that power spectral  density is a mean- 
ingful and useful statistical description of random phenomena (ref. 12). For optical sys-  
tems, the power spectral  density is often referred to as the Wiener spectrum to free the 
mathematical concept of a power spectral  density from i t s  physical implications in elec - 
t r ica l  engineering (ref. 13). 

Before formulating these statistics for the optical-mechanical line-scan imaging 
process, it is convenient to review a general analytical representation of random phe- 
nomena as presented by Fellgett and Linfoot (ref. 4) and by Linfoot (ref. 10) for optical 
images. Pertinent scene and camera characteristics are then molded into this analytical 
presentation, leading directly to the desired formulation of the information density gener- 
ated by the optical-mechanical line -scan imaging process. 

Analytical ~ ~ ~~ representation. - Let the spatial function g( x,@) be a random process that 
represents any signal o r  noise component confined to the isoplanatism patch A of the 
reconstructed line-scan image; let 
corresponding frequency spectrum 

the Fourier transform of this function &,w) be the 
confined to the camera passband g; and let 

(5)  
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be the corresponding Wiener spectrum. In other words, the Wiener spectrum can be cal- 
culated by averaging the modulus squared of the Fourier transform of g(x,+), that is, 
I & , o ) ( ~ ,  over the ensemble to which g(x,+) belongs and by dividing the result by the 
area IAI. 

The function g(x,+) is r e a l  for the case of incoherent radiation treated here, so 
that the complex conjugate of g(u,w) is equal to g(-u,-w). The Wiener spectrum is 
always real, nonnegative, and symmetric about the origin i.e., Gg(u,w) = Gg(-u7-u)). ( 

Furthermore, let & = ~(IJ ,o ) be the value of &,w) at  the sampling points 

(1/XM, 1/YN) assure  sufficient (mathematical) sampling since g(x,+) is confined to A 
(i.e., 1 xISM/2, (x(  ZYN/2). The frequency function g(u,w) can then be reconstructed 
f rom the sampled values according to Shannon's sampling theorem (ref. 5 )  

p4 P q  
= (p/XM,q/YN), where p and q are integers. The sampling intervals ( 

where 

sin TU sinc u = - 
T U  

and the notation pq E $ indicates that the summation is performed over all sampling 
points in $'. The spatial function g(x,qb) can be reconstructed by the Fourier s e r i e s  
expansion 

To avoid possible confusion it should be pointed out that the sampling intervals 
(l/XM,l/YN) in the frequency domain a r e  not directly related to the camera sampling 
intervals (X,Y) in the spatial domain except through the somewhat arbitrarily defined solid 
angle I A 1 of the isoplanatism patch A. The former sampling intervals a r e  introduced 
to provide a convenient analytical representation of scene and camera characteristics as 
a summation of discrete sampling values. The latter sampling intervals a r e  an inherent 
aspect of the optical-mechanical line-scan imaging process. 

The statistical properties of any signal or noise component g(x,+) confined to A 
can be characterized by the statistical properties of the finite collection of complex random 

10 



variables 

the entropy of 

for which (u ,w ) E $'. If Em has a probability distribution pm(i), 
Pg P q  

is defined as 

where { and 5 a r e  the r ea l  and imaginary components of respectively. Due to 
the conjugate symmetry of the collection of &, only one-half of them can be assumed to 
be independent. With this understanding, the joint entropy of the collection of (Le., 
of g(u,w)) is given by 

Pg ' 

Pq 

Each sample value of is assumed to have a Gaussian (i.e., normal) probability 
Pq 

density function with mean zero  and variance o2 equal to the average power of 
g7Pq Pq' 

that is, 

where 

For a random variable with a specified variance, the Gaussian probability density function 
represents the maximum statistical 
stituting this function into equations 
(ref. 5): 

uncertainty, or entropy, of the random variable. 
(6) and (7)  yields the following familiar results 

2 
g,Pq 

HA = log2 4no 
% 

Now, let the spatial function I(x,+b) be the random variable, minus its average 
value, that represents all the signal and noise components that have been constructed 
(without loss of information) in the isoplanatism patch A of the image; let the Fourier 

11 



transform of this function I(u,w) be the corresponding frequency spectrum confined to 
the camera passband I?; and let c&,w) be the corresponding Wiener spectrum. Simi- 
larly, let P(x,+) be the signal components of I(x,+), minus its average value, with 
+ ( u p )  and $p(u,w) the corresponding frequency and Wiener spectrum, respectively; 
and let N(x,+/) be the noise components of I(x,+), with I?(u,o) and $ N ( ~ , ~ )  the 
corresponding frequency and Wiener spectrum, respectively. It is assumed that the signal 
and noise components are additive and statistically independent, so that 

In the. sense that the information gained about a scene can be regarded as a reduction 
in the statistical uncertainty, or  entropy, about the probable state of the scene, the quantity 
of information Hi contained in I(x,@) is defined within the foregoing constraints as 

This summation can be approximated by an integration of a continuous function over 
as 

The information density in the isoplanatism patch A is then given by 

The units of hi a r e  binits per  steradians. 

N(X) o( x,+) with the spectral  and spatial characteristics separated for convenience. The 
spatial characteristics a r e  given by the random variable o( x,+) which has the following 

Object radiance.- . .  The radiance distribution of a natural scene is taken to be - 

12 



two constraints: (1) The variations of o(x ,q)  are effectively confined to the range 

(2) The average value of o(x,+) is unity; that is, 

An ensemble of scenes may be regarded to contain all scenes that consist of the same 
composition and have undergone the same morphological processes. 
tent of the scene is contained in the spatial distribution o( x,$) of the radiance. How- 
ever,  it should be recognized that the average photosensor signal K is proportional to the 
spatial average value of the scene radiance N ( h )  (see eq. (2)) and that $A) contributes, 
therefore, to the amount of information about the scene that can ultimately be recovered 
from the camera signal. 
defined as 

The information con- 

- 

With this understanding, the Wiener spectrum of the scene is 

where again lo(u,w)12 indicates that 16(u,w)12 has been averaged over the ensemble to 
which $(u,w) belongs. 

Camera signal.- The Wiener spectrum of the camera signal is defined as 

where $ ( u p )  is given by equations (3).  It is assumed on practical grounds that the 
aliased signals a r e  to be treated as noise - similar,  for example, to the noise generated 
by the photosensor. 
t rum of the aliased signal, like that of the photosensor noise, may be assumed known; but 
a particular realization of either aliased signal o r  photosensor noise cannot be assumed 
known for any random process. The Wiener spectrum of the "proper signal" @ps(u,u) 
(Le., of that component which is contained in the camera passband F when sufficient 
sampling occurs) is defined as 

It may be pointed out to emphasize this analogy that the Wiener spec- 

I 
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Following B l a c k "  and Tukey (ref. 14), the Wiener spectrum of the "aliased noise" 
only when insufficient sam-  $,(u,w) (i.e., of those components that a r e  contained in 

pling occurs) is defined as 

Electronic noise.- Noise is present in the object radiation itself, in the photosensor 
which transduces this radiation into an  electrical signal, and in the electronic circuit 
which amplifies the smal l  photwensor current into a signal large enough to be processed 
for transmission. Noise in the object radiation, referred to as photon noise, results f rom 
the random ar r iva l  of photon< at the photosensor. However, the magnitude of this noise is 
significantly smaller  than the noise generated in the solid-state photosensors and associ- 
ated electronics that would generally be used with optical-mechanical line-scan .devices. 
The noise generated in photosensors can be divided into noise affected in magnitude by the 
presence of the arr iving radiation, referred to as shot noise, and noise not so affected, 
referred to as dark current. The noise generated by the electronics is independent of the 
magnitude of the arriving radiation. It is generally too complicated to account rigorously 
for variations in shot noise as a function of variations in signal level; instead, an average 
value for the shot noise based on an average signal current  K can readily be accounted 
for.  This approximation applies in particular to low-contrast scenes. 

The electronic noise is amplified and sampled together with the signal for digital 
transmission. Just as undersampling of the signal frequency spectrum generates aliasing, 
so  does undersampling of the noise frequency spectrum generate additional noise. How- 
ever, severe undersampling of the electronic-noise frequency spectrum that would generate 
a significant increase in the magnitude of the noise samples should generally be avoidable 
by proper shaping of the electronic frequency response ;e(u). The Wiener spectrum of 
the sampled noise at  the output of the electronics becomes then 

where djen(u) is the Wiener spectrum of the unfiltered electronic noise. 

Quantization noise.- After the electrical signal (and noise) that has been generated 
along the line-scan direction is sampled, each one of the samples is also quantized for 
digital transmission. The quantization effect is a basic limitation of digital systems in 
determining the true value of a signal, just as random noise is a limitation of analog 
systems. 

14 
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In order  to determine the loss of information that results from quantization, it is 
necessary to account for some of the assumptions that have already been made about the 
signal and noise. Pertinent assumptions are: The average value of the signal is K and 
of the noise is zero; the probability density functions of signal and noise are Gaussian; and 
the effective range of signal variations is 2K. To form a valid model of the quantization 
process with these assumptions, it is necessary to assume also that the average-signal-to- 
rms-noise ratio is large - say, 10 o r  more.  
since only extremely poor images a r e  reproduced from signals for which the signal-to- 
noise ratio is less than 10.) 

(This constraint is not serious in  practice 

Additional assumptions a r e  as follows: The signal is linearly quantized over its 
effective range 2K, so that the quantum levels have a uniform spacing of ~ K / K  where K 

is the number of quantization levels; the quantization e r r o r  of any one sample is uncor- 
related with that of any other sample; and the signal occurs equally likely anywhere in the 
quantization interval -K/K to K/K. The last assumption is valid only if the number of 
quantization intervals is large - say, K 2 16 (i.e., 4-bit encoding or  more). 

These assumptions imply that the quantization e r r o r  nK has the uniform probability 
density function (ref. 15) 

K 
'("K) = 

= o  (Elsewhere) 

In fact, a random variable which is constrained to a finite interval has maximum entropy 
when its probability density function is uniform. 

A signal that is uniformly distributed between -K/K and K/K has a mean equal to 
zero  and a variance given by 

Since quantization noise is uncorrelated (in the spatial domain), it has a Wiener spectrum 
equal to i ts  variance; that is, 

Quantization noise will be treated as additive white Gaussian noise with the Wiener 
spectrum given by equation (19). The fact that this treatment of quantization leads to rea-  
sonable results is demonstrated in the next section. 
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Formulation of information density. - It remains now only to recognize that &, (u,w) 

(u,w) in equation (12) is equal to the Wiener spectrum of the proper signal component $ 
A PS 

given by equation (16) and that @ N ( ~ 7 w )  is equal to the sum of the Wiener spectrums of 
the aliased noise $an(u,o), electronic noise $:,(U), and quantization noise $Kn(u,w) 
given by equations (17), (18), and (19), respectively. 
tion (12) leads to the desired expression for the information density of the signal generated 
by the optical-mechanical line-scan imaging process : 

Substituting these results into equa- 

In order to support the treatment of quantization as additive noise and, hence, to 
explore the validity of equation (20), consider the following idealized situation. 
Wiener spectrum of the camera signal with an effective range of 2K be 

Let the 

= o  (Elsewhere) 

Consequently, the camera passband and sampling passband a r e  the same (Le., 
the aliasing noise te rm is zero. 
with an effective range 2ne be 

6 = $), and 
Similarly, let the Wiener spectrum of the electronic noise 

= o  (Elsewhere) 

Equation (20) reduces then to 

du dw 1 h. = log2 1 2  

Finally, let the electronic noise be small  compared to the quantization interval; that is, 
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Then, equation (20) reduces further to 

If the number of quantization levels is large, then for this idealized situation 
- 

hi 1 log2 K~ = - 1 log2/: K 
XY 

It is readily recognized that in this situation the information density hi approaches - 
but remains slightly less  than - the data density 
the maximum possible value of the ratio h 'hd is slightly less  than unity is consistent 
with the observation that hd represents  the maximum possible information density for a 
spatial radiance distribution which is uniform rather than Gaussian. 

hd given by equation (4a). The fact that 

il 

It is also informative to compare equation (20) with the general expression for infor- 
mation density derived by Fellgett and Linfoot (ref. 4, p. 399) for fi lm-camera images as 
given here  in the notation of this report: 

where ~ o ( u , w ) ,  6 (u,w),  and $f (u ,o)  a r e  the Wiener spectrum of the object radiance, 
photon noise, and film granularity, respectively, and ?zf(u,o) is the combined frequency 
response of the camera lens and film. It should be noted in particular that photon noise 
and aliased noise a r e  similarly treated. Both a r e  part of the object radiation, yet appear 
as statistically independent quantities. Furthermore, both their Wiener spectrums a r e  
modified by the frequency response of the camera. 

P 

Information Capacity and Efficiency 

The information density hi formulated by equation (20) is a function of scene as 
well as camera characteristics. 
of the scene is constant out to some frequency beyond the system response I?'. (See, for 
example, ref. 16.) Consistent with the previous assumption that the spatial radiance dis- 
tribution of the scene o( x,Q) is Gaussian with an effective range of 2, i ts  Wiener spec- 
t rum $o(u,o) is 1/4. It is also convenient to asscme that the Wiener spectrum of the 
electronic noise is constant within the frequency passband of the electrical filter Te(u), 

It is convenient to assume here  that the Wiener spectrum 

with magnitude c $ ~ ~ ( I J )  = 
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With these assumptions, the (statistical mean) information capacity (in binits per  
steradian) of the optical-mechanical line-scan imaging process becomes 

- du dw (21) 

2 I ~ c ( u , w ) l  
co 

2 1 l ~ ~ ( u  -g,w -2)l2 + K-2 nzli,(u)l2 + f 
m= -co n= -00 

The data density (in bits per steradian) that is inevitably associated with this information 
capacity is given by equation (4a) as 

It can be recognized that the objective to maximize the information capk i ty  hi 
without regard to the associated data density would lead to sufficient sampling and 
very small  quantization intervals, and, therefore, to large data requirements. It may often 
be more desirable either to maximize hi for a fixed value of hd or  to maximize the 
ratio h ipd .  This ratio will be referred to as information efficiency. 

hd 

EVALUATION 

The foregoing formulation of the information capacity of the optical-mechanical line- 
scan imaging process was based in part on reasonable considerations of the effect of alias- 
ing and quantization rather than on strictly mathematical grounds. It is, therefore, desira- 
ble to demonstrate that these assumptions lead to reasonable results. 

Frequency -Response Shapes 

The realizability of frequency -response shapes of optical apertures is constrained 
by the requirement that the aperture transmission is always greater than zero. This con- 
straint  may be generalized by noting that any aperture transmission function, being always 
positive, must have a square root; that is, T ( x , + )  = T2(x,+), where T ( x , + )  is the aper- 
ture  response and T( x,+) is i t s  square root. Taking the spatial Fourier transform and 
using the transform properties of the convolution yields 

c o w  

?(u,o) = $, $, +(u ' ,o ' )  f ( u  - u ' , o  - w')du' do '  
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In words, any realizable transfer function must, in the spatial-frequency domain, be repre-  
sentable as the convolution of a function with itself. Given any response function, realizable 
o r  not (it must, of course, be the transform of a rea l  function), a fully realizable one can 
be generated simply by convolving it with itself (ref. 17). 

The frequency-response characteristics of electrical f i l ters a r e  not similarly con- 
strained. Consequently, the overall frequency response of electro-optical systems can be 
shaped with greater freedom along the line-scan direction than along the azimuth-stepping 
direction. 

It is convenient here  to consider only the simplified frequency-response shapes gen- 
erated by the function 

k/2 
?(u,w) = 1 - (u2 + 0 2 )  

= o  

where k > 0. (See fig. 3 . )  For electrical f i l ters ,  'i depends only on u and for large 
k becomes the approximately rectangular-shaped frequency response of ideal low-pass 
electrical filters. A cylindrical-shaped frequency response (i.e., the rectangular shape 
with circular symmetry) is not realizable for optical apertures; however, an approximately 
cone-shaped frequency response is realizable as can be shown by convolving the cylindrical 
shape with itself. In fact, this convolution yields the frequency response of a diffraction- 
limited lens (see, for example, ref. 9), which is approximated by equation (22) for k = 1. 

For con- The remainder of this paper is concerned with four numerical examples. 
venience, in all but the first example, the camera passband F is normalized to be the set  
of points (u ,o)  with u + w2 5 1. Consequently, the Nyquist elevation and azimuth sam-  
pling rates a r e  1/X = 2 and 1/Y = 2, respectively. In the first example only an elec- 
tr ical  filter is considered for which the Nyquist rate is 1/X = 2. 

2 

Examples 

The performance of the optical-mechanical line-scan imaging process for fixed sam-  
1/Y) is determined - consistent with the assumptions that have been pling ra tes  (1/X and 

made - by the signal-to-noise ratio 
shape parameter ko, the electrical filter shape parameter ke, and the electrical filter 
cutoff frequency ue. 
that are used in the following examples. 

K/ne, the digital encoding level q,  the optical f i l ter  

Table I presents a summary of values for these five parameters  

Electrical filters. - Consider first a one-dimensional example that is representative 
of electrical filters. The information capacity analogous to equation (21) is 
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The frequency response of the electrical filter is given by 

ke 
= 1 - 

= o  

where ue is the cutoff frequency. Analogous to equations (4), the associated data den- 
sity is 

1 rl h = - l o g  K = -  
d X 2  x (25) 

The units of hi and hd are binits/radian and bits/radian, respectively. 

hi = i s h i  binits/second and the data ra te  hd = ishd bits/second, where is  is the 
mi r ro r  line-scan ra te  in radians/second. 

Often more useful and certainly more familiar is the information rate  

The information efficiency remains the same . .  
(i.e., hi/hd = hi/hd). 

Figure 4 illustrates the variation of information capacity hi, data density hd, and 

1/X = 2 cycles/radian; the root-mean-square (rms) magnitude 
information efficiency hi/hd with sampling ra te  1/X. For reference: ue = 1; the 
Nyquist sampling rate is 
of the electronic noise is 

[($x2 I s,' kz(u) du = 1.3 X 10 -3 

for  K/ne = 400 and ke = 1; and the r m s  magnitude of the quantization noise for 
71 = 8 bits is 

The results shown in figure 4 are intuitively satisfying. It should be noted in par- 
ticular in figure 4(c) that the information efficiency approaches unity (hi/hd = 0.9)  for a 
nearly ideal filter (ke = 4 )  and a nearly Nyquist sampling rate  (1/X = 1.95)  and that the 
peak information efficiency not only decreases with a poorer filter response but also shifts 
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toward lower sampling rates. Also, note in figure 4(b) that 10-bit encoding provides a 
significantly higher information capacity over 8-bit encoding, but that the latter provides 
a slightly higher information efficiency. 
ratio significantly higher than K/ne = 400 does not appreciably increase either hi o r  

Finally, note in figure 4(a) that a signal-to-noise 

hi/hd. 

Optical filters (symmetric sampling). - Consider next a two-dimensional example 
with circular symmetry that is representative of optical filters. The information capacity 
given by equation (21) becomes 

(26) du dw 
4 -2 I -2 

To (u, w ) 
-2 00 

? q u - p - T  n)+(e) + T K  

J 

{G- 
h. 1 = 2 1: Io log2 

The frequency response of the optical filter is given by 

70(u,w) = 1 - u + w l2 
( 2  2 > o  

= o  1 ("2 + w2 I 1) 

("2 + w 2 >  1) 

The associated data density given in equations (4) is 

1 77 h =- log  K = -  
d XY 2 XY 

The units of hi and hd are binits/steradian and bits/steradian, respectively. 

azimuth sampling rates  (Le., 
that the information efficiency for optical filters tends to be substantially lower than for 
electrical filters. Also, the peak information efficiency tends to occur a t  substantially 
lower sampling rates  than the Nyquist sampling rate  

Results for hi, hd, and hi hd are plotted in figure 5 for symmetric elevation and I 
1/X = l /Y) .  It should be noted by comparing figures 4 and 5 

1/X = 1/Y = 2. 

Optical filters (unsymmetric sampling). - Consider next a two-dimensional example 

1/Y, respectively, are not restricted to  be equal. 
identical to the previous one except that the elevation and azimuth sampling rates, 1/X 
and 
and efficiency hi/hd are then functions of two sampling rates,  it is necessary to use a 
two-dimensional graphical representation of numerical solutions. Figure 6 presents a 
contour plot of information efficiency (i.e., lines of constant hi/hd) corresponding to  the 
se t  of parameters K/ne = 400, 77 = 8 bits, and ko = 1. As would be expected, the con- 
tour lines have diagonal symmetry for  a filter with circular symmetry. Consequently, the 
maximum information efficiency is obtained with symmetric sampling rates  (Le. , 

Since the information capacity hi 

I/X = I/Y). 
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Figure 7(a) presents a contour plot of information capacity hi and three contours 
of constant data density hd. Figure 7(b) presents a plot of values of hi along the three 
contours of constant hd against the azimuth sampling rate 1/Y. Again, the maximum 
information capacity is obtained with symmetric sampling rates. 

Electro-optical systems. -. - Consider last a two-dimensional example without circular 
symmetry that is representative of electro-optical systems. The information capacity 
becomes 

- 2  - 2  
TOO(U,W) T e ( d  

- - . - -- - 

m=-m n=-m 

(28) 

hi = 2 lo1 lo log2 

The frequency response of the electrical filter is given by equations (24) and of the optical 
f i l ter  by equations (27). The associated data density hd is given by equations (4). 

figure 6, but for K/ne = 400, q = 8 bits, ko = 1, k = 4, and u = 0.8. Maximum 
values of hi/hd sti l l  occur at  sampling ra tes  below the Nyquist rate. However, as would 
be expected, the location of these maximum values occurs off the diagonal at an elevation 
sampling ra te  which is lower than the azimuth sampling rate because of the additional 
electrical filtering along the elevation direction. 

Figure 8 presents a contour plot of the information efficiency hi/hd analogous to 

e e 

Figure 9 presents information-capacity plots analogous to figure 7. Again, as in 
figure 8, the maximum information capacity for a fixed data density occurs at an elevation 
sampling rate lower than the azimuth sampling rate. 

CONCLUDING REMARKS 

Imaging systems cannot exactly reproduce a scene as an image. All images a r e  
degraded at  least by some blurring of smal l  detail and by random noise. As demonstrated 
by Fellgett and Linfoot, these two phenomena inevitably limit the amount of information 
density in an image. The optical-mechanical line-scan imaging process of many space- 
borne cameras  almost unavoidably generates some additional image degradation due to 
aliasing and quantization. The results of Fellgett and Linfoot a r e  extended here to include 
the effects of these degradations. 
statistically independent and additive Gaussian random processes, as have been al l  pre-  
vious related analyses for incoherent radiation. 
ular the treatment of aliasing and quantization as noise sources. 

All formulations a r e  constrained by the assumption of 

This assumption includes here in partic- 
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The information density in an  image depends not only on characteristics of the imag- 
ing system but also on statistical properties of the scene; namely, its random spatial radi- 
ance variation and power spectral  density (i.e., Wiener spectrum). It is assumed that the 
radiance variation is Gaussian and that the Wiener spectrum is flat out to some spatial 
frequency beyond the optical passband of the imaging system. The information density of 
an image is then solely determined by the information capacity of the instrument used to 
obtain this image. 

The objective to maximize the information capacity of the optical-mechanical line- 
scan imaging process without regard to the associated data density can lead to impracti- 
cally large data requirements. It may be preferable either to maximize the information 
capacity for a fixed data density o r  to maximize the information efficiency (Le., the ratio 
of information capacity to data density). Both the information capacity for a fixed data 
density and the information efficiency exhibit a distinct single maximum when displayed as 
a function of sampling rate. 

I 

I 
I 

It is shown that the information efficiency of an instrument can approach unity (Le., 
that the information capacity of an  instrument can approach the data density) under certain 
theoretical conditions. These conditions can be approximated in practice by electronic 
systems for time-varying signals but not by optical systems for space-varying signals. 
The reason for this is that the frequency response of electronic systems can approach a 
rectangular shape, whereas that of optical systems cannot approach a two-dimensional 
equivalent to this shape (Le., a cylinderlike shape). In fact, the frequency response of 
an optical system is in practice generally limited by the conelike shape of a diffraction- 
limited lens, limiting the information efficiency of optical-mechanical line-scan devices to 
considerably less than unity. Nevertheless, within this limit, the information efficiency 
can vary significantly with sampling rate,  signal-to-noise ratio, and quantization interval, 
as has been illustrated fo r  a wide range of reasonable camera frequency -response shapes. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., April 22, 1975. 
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TABLE I.- SUMMARY OF EXAMPLES 

0.25 
1 
4 

Systems 

1 
1 
1 

Electrical filter 100 6 
400 8 

1600 10 

100 6 
400 8 

1600 10 

- 

Optical f i l ter ,  symmetric sampling 

Not 

~~ 

Optical filter, unsymmetric sampling 

Electro-optical f i l ter ,  unsymmetric 
sampling 

4 0.8 

- 

Parameters  

400 

k0 

applicable 

0.25 
.5 

1 

1 

1 8 

Not applicable 
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Figure 1. - Basic facsimile-camera configuration. 
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(a) Sufficient sampling. 

(b) Insufficient sampling. 

Figure 2. - Frequency spectrum generated by the optical-mechanical 
line-scan imaging process. 
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Figure 3. - Simplified frequency-response shapes. 
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Figure 4.- Variation of information capacity hi, data density hd, and information 
efficiency hi/hd with sampling rate 1/X for electrical filters. 
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Figure 5.- Variation of information capacity hi, data density hd, and information 
efficiency hi/hd with symmetric sampling r a t e s  1/X = 1/Y for Optical filters. 
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Figure 6.- Contour plot of information efficiency h hd as a function of sampling i/ 
rates 1/X and 1/Y for optical filters. K/ne = 400; q = 8 bits; and ko = 1. 
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I '  

(a) Contour plot of information capacity hi and three contours of constant data 
density hd as a function of sampling ra tes  1/X and 1/Y. 

(b) Plot of hi along the three contours of constant hd against sampling ra te  1/Y. 

Figure 7.- Plots of information capacity for optical filters. 71 = 8 bits; 
and ko = 1. 

K/ne = 400; 
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Figure 8.- Contour plot of information efficiency hi/hd as a function of sampling 
rates 1/X and 1/Y for electro-optical systems. K/ne = 400; 77 = 8 bits; 
k = 1; k = 4; and ue = 0.8. 0 e 
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(a) Contour plot of information capacity hi and three contours of constant data 
density hd as a function of sampling rates 1/X and 1/Y. 

(b) Plot of hi along the three contours of constant hd against sampling rate 1/Y. 

Figure 9.- Plots of information capacity for electro-optical systems. K/ne = 400; 
= 8 bits; ko = 1; k = 4; and ue = 0.8. e 
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